Smooth Isotonic Regression: A New Method to Calibrate Predictive Models

نویسندگان

  • Xiaoqian Jiang
  • Melanie Osl
  • Jihoon Kim
  • Lucila Ohno-Machado
چکیده

Predictive models are critical for risk adjustment in clinical research. Evaluation of supervised learning models often focuses on predictive model discrimination, sometimes neglecting the assessment of their calibration. Recent research in machine learning has shown the benefits of calibrating predictive models, which becomes especially important when probability estimates are used for clinical decision making. By extending the isotonic regression method for recalibration to obtain a smoother fit in reliability diagrams, we introduce a novel method that combines parametric and non-parametric approaches. The method calibrates probabilistic outputs smoothly and shows better generalization ability than its ancestors in simulated as well as real world biomedical data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibrating predictive model estimates to support personalized medicine

OBJECTIVE Predictive models that generate individualized estimates for medically relevant outcomes are playing increasing roles in clinical care and translational research. However, current methods for calibrating these estimates lose valuable information. Our goal is to develop a new calibration method to conserve as much information as possible, and would compare favorably to existing methods...

متن کامل

I-spline Smoothing for Calibrating Predictive Models

We proposed the I-spline Smoothing approach for calibrating predictive models by solving a nonlinear monotone regression problem. We took advantage of I-spline properties to obtain globally optimal solutions while keeping the computational cost low. Numerical studies based on three data sets showed the empirical evidences of I-spline Smoothing in improving calibration (i.e.,1.6x, 1.4x, and 1.4x...

متن کامل

Technical Note: PAV and the ROC Convex Hull

Classifier calibration is the process of converting classifier scores into reliable probability estimates. Recently, a calibration technique based on isotonic regression has gained attention within machine learning as a flexible and effective way to calibrate classifiers. We show that, surprisingly, isotonic regression based calibration using the Pool Adjacent Violators algorithm is equivalent ...

متن کامل

Logic regression and its application in predicting diseases

Regression is one of the most important statistical tools in data analysis and study of the relationship between predictive variables and the response variable. in most issues, regression models and decision tress only can show the main effects of predictor variables on the response and considering interactions between variables does not exceed of two way and ultimately three-way, due to co...

متن کامل

برآورد خطر زمینلرزه در استان مرکزی

 Evaluation of intercity trips may be used for anticipation of trip demands, services’ pricing and improvement of the studies for contradiction determination. Usage of trip demand modeling processes, like what existed in the classic method for analyzing urban trip demand, would make the analysis of road trips possible. A substitute method for 4 Steps Models is to use Direct Demand Modeling whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011